Semi-automated extraction of expressive performance information from acoustic recordings of piano music

Andrew Earis

Outline

- Parameters of expressive piano performance
- Scientific techniques: Fourier transform
 & wavelet transform
- CHARM: The semi-automated system

Measurable features of expressive performance

- Timing (note onset and offset)
- Dynamics (variations in intensity of notes and chords)
 Pitch

Timing parameterisation

- Note onset time. The time at which the note is played.
- Note offset time. The time at which the note is released.
- Attack duration. The time from the initial sound until its amplitude is at a maximum.
- Sustain duration. The time from maximum sound amplitude until the note is released.
- Decay time. The time from when the note is released until the sound ceases.

Dynamics parameterisation

- Power of note
- Maximum amplitude (amplitude of attack)
- Sustain amplitude (amplitude, or change of amplitude, of the sustain)

Pitch parameterisation

- Fundamental frequency of note
- Frequency of individual partials (and how they deviate from the precise harmonic frequencies)
- Vibrato
 - Frequency of vibrato
 - Amplitude of vibrato
- Glissando

Aims

to extract the expressive performance information from acoustic recordings of piano music with reference to a digitised version of the musical score of the work being performed.

Simple flowchart

Methods

The location in time of individual notes and chords within an acoustic recording must be identified and related to a digitised score of the work being performed.

This is a classical time-frequency analysis problem

Fundamental research issues

- A number of constraints on the time-frequency resolution required.
 - Required frequency resolution
 - determined by the interval between adjacent semitones
 - proportional to the frequency of the lower semitone
 - Spacing varies from about 1.6Hz at the bottom of the piano keyboard to over 120Hz at the top
 - the fundamental frequencies ranging from 27.5Hz to just over 4kHz.
 - Required timing resolution
 - The shortest note duration in rapid note passages is around 50ms.
 - The human ear is capable of perceiving differences of as little as 10ms.

Possible approaches

- Filterbank techniques
- Time-frequency analysis (using Fourier Transforms, wavelets and spectrographs)
- Modelling

Short Time Fourier analysis

Wavelet analysis

Problems with 'simple approach'

- Synchronization between score and acoustic recording relies on stepping through each event in the score in turn
- If a particular note or chord in the score is not played, the whole system can break down
- Other problems
 - too much noise in the recording
 - a high degree of rubato
 - chords are played with too much asynchrony
- The longer the passage of music to be analysed, the more likely it is that such a system will break down.
- Time-consuming manual checking of the data would also required to ensure accuracy.

CHARM: Semi-automated system

- A semi-automated expression extractor, requiring user input for checking and verifying results as the algorithm proceeds i.e. note-on-note.
- Input to system: MIDI score, acoustic waveform
- Technology incorporated: filterbank/wavelet-based note onset detector
- Note/event parameter measurements: onset time, dynamics

Advantages

- Quick to use, results can be verified as they go along know they are correct!
- Very easy to use
- Wide range of scores can be used
- Quick and easy to develop and automate further
- Results are verified by the user as measurements are made, ensuring that all results are correct and can be used reliably for musicological analysis
- Further enhancements can be made (e.g. increase level of automation, sophistication of parameters)

Digitisation of musical score

- Score is scanned using a standard flatbed scanner
- Converted to symbolic data with Sharpeye
- Errors are corrected manually
- Symbolic data is then converted to the Humdrum data format
- This is outputted as ASCII tabular data

- Manual beat tapping to acoustic recording
 - Standard beat tapping procedures
 - backbeat.exe
 - average of 20 complete taps initially!

- Averaged manual beat tapped data combined with the digitized musical score
 - -> Approximate performance score

Column	Description	
1	abstime	Average absolute time in ms of beat tapped timings
2	duration	Expected duration of note in ms based on score duration
3	note	MIDI number of note pitch
4	metric level	1 = downbeat 0 = beat -1 = offbeat
5	bar number	
6	absolute beat	measured from beginning of work

Approximate performance score: Mazurka in A minor op 7 no 2

1912	646	76	1	0	0
2558	463	77	0	1	1
3021	154	76	-1	1	1.75
3175	603	57	0	1	2
3175	603	62	0	1	2
3175	603	65	0	1	2
3175	603	74	0	1	2
3778	652	57	1	1	3
3778	652	62	1	1	3
3778	652	65	1	1	3
3778	652	77	1	1	3
4430	1111	77	0	2	4
4914	627	60	0	2	5
4914	627	65	0	2	5

 Correction of 'main beat' onset times (from beat tapped times) using wavelet-based algorithm, programmed in MATLAB

Parameters

- Search window parameters
- Wavelet parameter k
- Wavelet parameter LPF
- Wavelet tuning
- Feedback analysis

Search window parameters

Feedback analysis

- Manual correction of main beat onset times
 - Sonic Visualiser
- Output table of corrected main beat onset times

- Estimation of subbeat onset times from main beat onset times
- Correction of estimated subbeat onset times using algorithm
- Estimation of main beat and subbeat dynamics
- Estimation of individual note onset times

End product

- MATLAB code converted to standard .exe files
- Input data required
 - Excel control spreadsheet for batch processing of data
 - Input/output file names
 - Analysis parameters
 - 'Main beat' beat tapped input data spreadsheet
 - .wav sound recording

End product

- Three different algorithms
 - mainbeatcorrection.exe
 - correction of 'main beat' tapped onset times
 - measurement of main beat dynamics (in dB)
 - subbeatmeasurement.exe
 - measurement of sub beat onset times
 - measurement of sub beat dynamics
 - individualnotemeasurement.exe
 - measurement of individual note onset timings and dynamics
- Will be available (or a variation of this) on CHARM website as downloadable resource

End product

• For example...

- 3 recordings of Chopin's Mazurka in A minor op 7 no 2
 - Friedman (1930)
 - Rubinstein (1939)
 - Indjic (1988)
- Graphs of
 - inter-onset interval for each event in score
 - dynamics of each event (scaled in dBs)

Inter-onset interval

Event dynamics

Conclusions and future work

- Further scientific development (wavelet parameters, shape, dynamics measurement)
- Extension to note offset times
- Testing and refinement of user interface